XFP-S1015L-80 Optical XFP Module

10Gbps XFP ZR Transceiver SM 1550nm 80KM LC

Features

- Supports 9.95Gb/s to 11.3Gb/s bit rates
- 1550nm Cooled EML laser and APD photodiode
- Maximum link length of 80km with SMF
- XFP MSA package with duplex LC connector
- Hot-pluggable XFP footprint, Built-in digital diagnose
- No reference clock required
- Single +3.3V power supply
- Power dissipation <3.5W
- Compatible with RoHS
- Operating case temperature:

Standard: 0 to +70° C

Industrial: -40 to +85° C

Application

- 10GBASE-ZR/ZW 10G Ethernet
- 10G Fiber Channel
- SONET OC-192 &SDH STM 64

Standard

- Compliant with XFP MSA
- Compliant with SFF-8472
- Compliant with IEEE 802.3ae

Description

The XFP module is compliant with the 10G Small Form-Factor Pluggable (XFP) Multi-Source Agreement (MSA), supporting data-rate of 9.95~11.3Gbps, and transmission distance up to 80km on SMF.

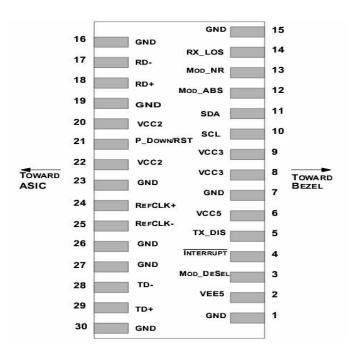
The transceiver module comprises a transmitter with 1550nm Cooled EML laser and a receiver with a APD photodiode. Transmitter and receiver are separate within a wide temperature range and offers optimum heat dissipation and excellent electromagnetic shielding thus enabling high port densities for 10 GbE systems.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	+3.6	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	
Operating Cose Temperature	Standard	- Tc	0		+70	°C
Operating Case Temperature	Industrial		-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc			760	mA
Data Rate		9.95	10.3	11.3	Gbps	
Transmission Distance			80		km	


Optical and Electrical Characteristics

Parar	meter	Symbol	Min	Typical	Max	Unit	Notes
	Transmitter						
Centre V	Vavelength	λс	1530	1550	1570	nm	
Side-Mode Su	ppression Ratio	SMSR	30			dB	
Average C	output Power	Pout	0		5	dBm	1
Extinct	ion Ratio	ER	9			dB	
Data Input Sv	ving Differential	V _{IN}	120		820	mV	2
Input Differer	Input Differential Impedance		90	100	110	Ω	
T// D: 11	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
	Receiver						
Centre Wavelength		λс	1270		1610	nm	
Receiver	Receiver Sensitivity				-24	dBm	3
Receiver Overload			-6			dBm	3
LOS De-Assert		LOS _D			-27	dBm	
LOS Assert		LOSA	-37			dBm	
LOS Hysteresis			0.5		4	dB	
Data Output Swing Differential		V _{out}	340	650	850	mV	2
1	LOS		2.0		Vcc	V	
					0.8	V	

Notes:

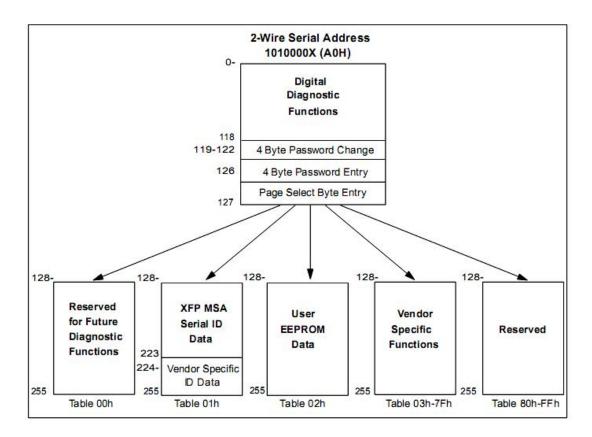
- 1. The optical power is launched into SMF.
- 2. Internally AC-coupled.
- 3. Measured with a PRBS 2^{31} -1 test pattern @9953Mbps, BER $\leq 1 \times 10^{-12}$.

Pin Description

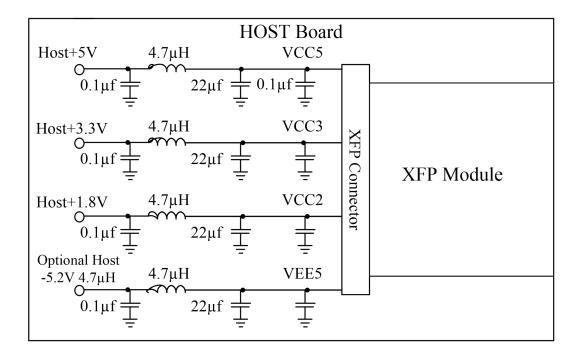
Pin	Logic	Symbol	Name/Description	Re
1		GND	Module Ground	1
2		VEE5	Optional –5.2 Power Supply – Not required	
3	LVTTL-I	Mod-Desel	Module De-select; When held low allows the module to, respond to	
	LVIIL-I	WIOG-Desei	2-wire serial interface commands	
4	LVTTL-O	Interrupt	Interrupt (bar); Indicates presence of an important condition which can	2
			be read over the serial 2-wire interface	
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off	
6		VCC5	+5 Power Supply – Not required	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock	2
11	LVTTL-	SDA	Serial 2-wire interface data line	2
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the	2
13	LVTTL-O	Mod_NR	Module Not Ready;	2
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1
16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not required	

			Power Down; When high, places the module in the low power stand-by	
21	LVTTL-I	P_Down/R	mode and on the falling edge of P Down initiates a module reset	
		ST	Reset; The falling edge initiates a complete reset of the module	
			including the 2-wire serial interface, equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	Module Ground	1
24	24 PECL-I	PECL-I RefCLK+	Reference Clock non-inverted input, AC coupled on the host board –	3
24			Not required	
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on the host board – Not	3
26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

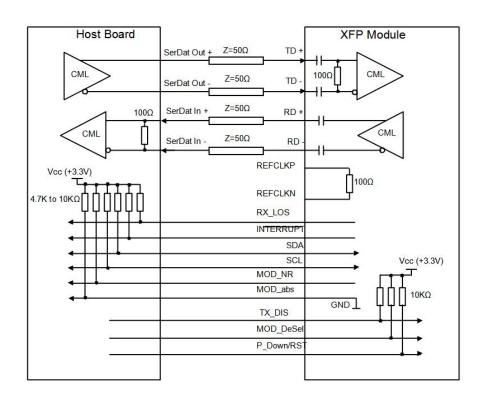
Notes:

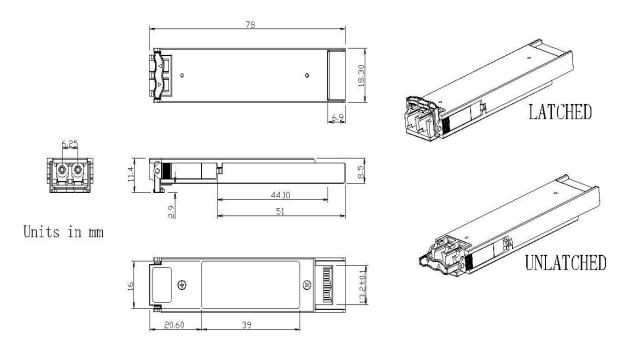

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector, should be pulled up with 4.7k-10k ohms on host board to a voltage between
- 3.15Vand 3.6V.
- 3. A Reference Clock input is not required.

Management Interface


The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented.


The digital diagnostic memory map specific data field defines as following.


Recommended Host Board Power Supply Circuit

Recommended High-speed Interface Circuit

Mechanical Dimensions

Ordering information

Model No.	Product Description
XFP-S1015L-80	10Gbps, 1550nm, SMF, 80km, 0°C ~ +70°C, with DDM
XFP-S1015L-80I	10Gbps, 1550nm, SMF, 80km, -40°C~+85°C, with DDM

For further information, please visit our website https://www.aoatech.com

All rights are reserved by AOA Technology Co.,Ltd. AOA reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.